448 research outputs found

    Differentiating criminal networks in the illegal wildlife trade: organized, corporate and disorganized crime

    Get PDF
    Historically, the poaching of wildlife was portrayed as a small-scale local activity in which only small numbers of wildlife would be smuggled illegally by collectors or opportunists. Nowadays, this image has changed: criminal networks are believed to be highly involved in wildlife trafficking, which has become a significant area of illicit activity. Even though wildlife trafficking has become accepted as a major area of crime and an important topic and criminologists have examined a variety of illegal wildlife markets, research that specifically focusses on the involvement of different criminal networks and their specific nature is lacking. The concept of a ‘criminal network’ or ‘serious organized crime’ is amorphous – getting used interchangeably and describes all crime that is structured rather than solely reflecting crime that fits within normative definitions of ‘organized’ crime. In reality, criminal networks are diverse. As such, we propose categories of criminal networks that are evidenced in the literature and within our own fieldwork: (1) organized crime groups (2) corporate crime groups and (3) disorganized criminal networks. Whereas there are instances when these groups act alone, this article will (also) discuss the overlap and interaction that occurs between our proposed categories and discuss the complicated nature of the involved criminal networks as well as predictions as to the future of these networks

    A multiwavelength study of Swift GRB 060111B constraining the origin of its prompt optical emission

    Get PDF
    In this work, we present the results obtained from a multi-wavelength campaign, as well as from the public Swift/BAT, XRT, and UVOT data of GRB 060111B for which a bright optical emission was measured with good temporal resolution during the prompt phase. We identified the host galaxy at R~25 mag; its featureless spectral continuum and brightness, as well as the non-detection of any associated supernova 16 days after the trigger and other independent redshift estimates, converge to z~1-2. From the analysis of the early afterglow SED, we find that non-negligible host galaxy dust extinction, in addition to the Galactic one, affects the observed flux in the optical regime. The extinction-corrected optical-to-gamma-ray spectral energy distribution during the prompt emission shows a flux density ratio Fγ/FoptF_{\gamma}/F_{opt}=0.01-0.0001 with spectral index βγ,opt>βγ\beta_{\gamma,opt}> \beta_{\gamma}, strongly suggesting a separate origin of the optical and gamma-ray components. This result is supported by the lack of correlated behavior in the prompt emission light curves observed in the two energy domains. The properties of the prompt optical emission observed during GRB 060111B favor interpretation of this optical light as radiation from the reverse shock in a thick shell limit and in the slow cooling regime. The expected peak flux is consistent with the observed one corrected for the host extinction, likely indicating that the starting time of the TAROT observations is very near to or coincident with the peak time. The estimated fireball initial Lorentz factor is >260-360 at z=1-2, similar to the Lorentz factors obtained from other GRBs. GRB 060111B is a rare, good test case of the reverse shock emission mechanism in both the X-ray and optical energy ranges.Comment: Accepted for publication in Astronomy and Astrophysics, 15 pages,10 figures and 7 table

    Multicolor observations of the afterglow of the short/hard GRB 050724

    Get PDF
    New information on short/hard gamma-ray bursts (GRBs) is being gathered thanks to the discovery of their optical and X-ray afterglows. However, some key aspects are still poorly understood, including the collimation level of the outflow, the duration of the central engine activity, and the properties of the progenitor systems. We want to constrain the physical properties of the short GRB 050724 and of its host galaxy, and make some inferences on the global short GRB population. We present optical observations of the afterglow of GRB 050724 and of its host galaxy, significantly expanding the existing dataset for this event. We compare our results with models, complementing them with available measurements from the literature. We study the afterglow light curve and spectrum including X-ray data. We also present observations of the host galaxy. The observed optical emission was likely related to the large flare observed in the X-ray light curve. The apparent steep decay was therefore not due to the jet effect. Available data are indeed consistent with low collimation, in turn implying a large energy release, comparable to that of long GRBs. The flare properties also constrain the internal shock mechanism, requiring a large Lorentz factor contrast between the colliding shells. This implies that the central engine was active at late times, rather than ejecting all shells simultaneously. The host galaxy has red colors and no ongoing star formation, consistent with previous findings on this GRB. However, it is not a pure elliptical, and has some faint spiral structure. GRB 050724 provides the most compelling case for association between a short burst and a galaxy with old stellar population. It thus plays a pivotal role in constraining progenitors models, which should allow for long delays between birth and explosion.Comment: 8 pages, 5 figures, 4 tables, accepted for publication in A&A, typo fixe

    Rise and fall of the X-ray flash 080330: an off-axis jet?

    Get PDF
    Original article can be found at: http://www.aanda.org/ Copyright The European Southern Observatory (ESO). DOI: 10.1051/0004-6361/200911719Context. X-ray flashes (XRFs) are a class of gamma-ray bursts (GRBs) with a peak energy of the time-integrated spectrum, , typically below 30 keV, whereas classical GRBs have of a few hundreds of keV. Apart from and the systematically lower luminosity, the properties of XRFs, such as their duration or spectral indices, are typical of the classical GRBs. Yet, the nature of XRFs and their differences from GRBs are not understood. In addition, there is no consensus on the interpretation of the shallow decay phase observed in most X-ray afterglows of both XRFs and GRBs. Aims. We examine in detail the case of XRF 080330 discovered by Swift at redshift 1.51. This burst is representative of the XRF class and exhibits an X-ray shallow decay. The rich broadband (from NIR to UV) photometric data set we collected during this phase makes it an ideal candidate for testing the off-axis jet interpretation proposed to explain both the softness of XRFs and the shallow decay phase. Methods. We present prompt -ray, early and late NIR/visible/UV and X-ray observations of the XRF 080330. We derive a spectral energy distribution from NIR to X-ray bands across the shallow/plateau phase and describe the temporal evolution of the multi-wavelength afterglow within the context of the standard afterglow model. Results. The multiwavelength evolution of the afterglow is achromatic from ~102 s to ~8104 s. The energy spectrum from NIR to X-ray is reproduced well by a simple power-law, , with = 0.790.01 and negligible rest-frame dust extinction. The light curve can be modelled by either a piecewise power-law or the combination of a smoothly broken power law with an initial rise up to ~600 s, a plateau lasting up to ~2 ks, followed by a gradual steepening to a power-law decay index of ~2 until 82 ks. At this point, a bump appears to be modelled well with a second component, while the corresponding optical energy spectrum, , reddens by = 0.260.06. Conclusions. A single-component jet viewed off-axis can explain the light curve of XRF 080330, the late-time reddening being due to the reverse shock of an energy injection episode and its being an XRF. Other possibilities, such as the optical rise marking the pre-deceleration of the fireball within a wind environment, cannot be excluded definitely, but appear to be contrived. We exclude the possibility of a dust decreasing column density being swept up by the fireball as explaining the rise of the afterglow.Peer reviewe

    Limits on optical polarization during the prompt phase of GRB 140430A

    Get PDF
    Gamma-ray burst GRB 140430A was detected by the Swift satellite and observed promptly with the imaging polarimeter RINGO3 mounted on the Liverpool Telescope, with observations beginning while the prompt γ\gamma-ray emission was still ongoing. In this paper, we present densely sampled (10-second temporal resolution) early optical light curves in 3 optical bands and limits to the degree of optical polarization. We compare optical, X-ray and gamma-ray properties and present an analysis of the optical emission during a period of high-energy flaring. The complex optical light curve cannot be explained merely with a combination of forward and reverse shock emission from a standard external shock, implying additional contribution of emission from internal shock dissipation. We estimate an upper limit for time averaged optical polarization during the prompt phase to be as low as P < 12% (1σ\sigma). This suggests that the optical flares and early afterglow emission in this GRB are not highly polarized. Alternatively, time averaging could mask the presence of otherwise polarized components of distinct origin at different polarization position angles

    A Reverse Shock and Unusual Radio Properties in GRB 160625B

    Get PDF
    We present multi-wavelength observations and modeling of the exceptionally bright long γ-ray burst GRB 160625B. The optical and X-ray data are well fit by synchrotron emission from a collimated blastwave with an opening angle of {\theta }_{j}\approx 3\buildrel{\circ}\over{.} 6 and kinetic energy of EK2×1051{E}_{K}\approx 2\times {10}^{51} erg, propagating into a low-density (n5×105n\approx 5\times {10}^{-5} cm−3) medium with a uniform profile. The forward shock is sub-dominant in the radio band; instead, the radio emission is dominated by two additional components. The first component is consistent with emission from a reverse shock, indicating an initial Lorentz factor of Γ0100{{\rm{\Gamma }}}_{0}\gtrsim 100 and an ejecta magnetization of {R}_{B}\approx 1\mbox{--}100. The second component exhibits peculiar spectral and temporal evolution and is most likely the result of scattering of the radio emission by the turbulent Milky Way interstellar medium (ISM). Such scattering is expected in any sufficiently compact extragalactic source and has been seen in GRBs before, but the large amplitude and long duration of the variability seen here are qualitatively more similar to extreme scattering events previously observed in quasars, rather than normal interstellar scintillation effects. High-cadence, broadband radio observations of future GRBs are needed to fully characterize such effects, which can sensitively probe the properties of the ISM and must be taken into account before variability intrinsic to the GRB can be interpreted correctly

    Differential expression and localization of TIMP-1 and TIMP-4 in human gliomas

    Get PDF
    Studies have suggested that an imbalance of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) may contribute to the malignant phenotype of gliomas. In this study, we have undertaken a detailed analysis of expression of the TIMP family in normal human brain and malignant gliomas at both the mRNA and protein level. Reverse transcription-PCR (RT-PCR) analyses of total RNA from surgical tumour specimens revealed unique expression patterns for the 4 members of the TIMP family, with TIMP-1 and -4 showing positive and negative correlations, respectively, with glioma malignancy. By RT-PCR, TIMP-2 and TIMP-3 expression did not change with tumour grade. In situ hybridization localized TIMP-1 to glial tumour cells and also to the surrounding tumour vasculature. TIMP-4 transcripts were predominantly localized to tumour cells, though minor expression was found in vessels. Recombinant TIMP-4 reduced invasion of U251 glioma cells through Matrigel, and U87 clones overexpressing TIMP-4 showed reduced invasive capacity in vitro. TIMP-4, but not TIMP-1, blocked Membrane Type-1-MMP-mediated progelatinase-A (MMP-2) activation in human umbilical vein endothelial cells. The differential expression and localization of individual TIMPs may contribute to the pathophysiology of human malignant gliomas, particularly with regard to tumour vascularization. © 2001 Cancer Research Campaign http://www.bjcancer.co

    International criteria for electrocardiographic interpretation in athletes: Consensus statement.

    Get PDF
    Sudden cardiac death (SCD) is the leading cause of mortality in athletes during sport. A variety of mostly hereditary, structural or electrical cardiac disorders are associated with SCD in young athletes, the majority of which can be identified or suggested by abnormalities on a resting 12-lead electrocardiogram (ECG). Whether used for diagnostic or screening purposes, physicians responsible for the cardiovascular care of athletes should be knowledgeable and competent in ECG interpretation in athletes. However, in most countries a shortage of physician expertise limits wider application of the ECG in the care of the athlete. A critical need exists for physician education in modern ECG interpretation that distinguishes normal physiological adaptations in athletes from distinctly abnormal findings suggestive of underlying pathology. Since the original 2010 European Society of Cardiology recommendations for ECG interpretation in athletes, ECG standards have evolved quickly, advanced by a growing body of scientific data and investigations that both examine proposed criteria sets and establish new evidence to guide refinements. On 26-27 February 2015, an international group of experts in sports cardiology, inherited cardiac disease, and sports medicine convened in Seattle, Washington (USA), to update contemporary standards for ECG interpretation in athletes. The objective of the meeting was to define and revise ECG interpretation standards based on new and emerging research and to develop a clear guide to the proper evaluation of ECG abnormalities in athletes. This statement represents an international consensus for ECG interpretation in athletes and provides expert opinion-based recommendations linking specific ECG abnormalities and the secondary evaluation for conditions associated with SCD

    Successful reduced-intensity SCT from unrelated cord blood in three patients with X-linked SCID

    Get PDF
    We describe three males with X-linked SCID (X-SCID) who were successfully treated by reduced-intensity SCT from unrelated cord blood (CB). Mean age at transplant was 5.7 months (range, 3–9 months). Pre-transplant conditioning for all patients consisted of fludarabine (FLU) (30 mg/m2 per day) from day −7 to day −2 (total dose 180 mg/m2) and BU 4 mg/kg per day from day −3 to day −2 (total dose 8 mg/kg). All CB units were serologically matched at HLA-A, B and DR loci. Although two patients had suffered from fungal or bacterial pneumonia before transplantation, there were no other infectious complications during transplantation. All patients engrafted and achieved 100% donor chimerism. We also confirmed full donor chimerism of both T and B cells. Only one patient developed acute GVHD grade III, which was resolved by increasing the dose of oral corticosteroid. None of the patients has developed chronic GVHD during follow up for 21–77 months. None of the patient received i.v. Ig replacement post transplant, or showed delay in psychomotor development. Reduced-intensity conditioning consisting of FLU and BU and transplantation from unrelated CB was an effective and safe treatment for these patients with X-SCID
    corecore